These stunning golden bananas may make you feel differently about GMOs.

Imagine you’re eating a banana .

Photo from Jewel Samad/ AFP/ Getty Images.

As you start to strip away the yellow peel, you notice that the inside seems different. Instead of the banana’s flesh being a pale cream coloring, it’s a rich golden-orange.

Would you feed that ?

Because that’s what scientists from Queensland University of Technology in Australia have created using genetic modification. And these golden bananas aren’t just for show. They could save hundreds of thousands of children a year from running blind, or even succumbing .

In the United States, bananas are smoothie ingredients and breakfast toppings. But in some parts of the world, they’re as essential as bread.

Bananas are one of the world’s staple crops. In Western africa, they’re as important to the local diet as rice is to East Asia or potatoes were to the Irish. In parts of Uganda, the typical diet includes more than two pounds of bananas a day.

But no single food has all the vitamins and minerals a person needs to live, and without a varied diet, you can get sick. For bananas and the people who depend on them, it’s vitamin A that’s their own problems there isn’t enough in the fruit .

Not getting enough vitamin A is a big deal, especially for children. It can weaken the immune system and stunt growth, and it’s the leading cause of preventable childhood blindness in the world. Of the preschool-age infants who die every year in Africa, about 6% die of not getting enough vitamin A.

The obvious answer would be to eat a most varied diet, but fresh fruits and meat can be costly, and many low-income farmers don’t have the money.

But now scientists might have an easy way to add that oh-so-crucial vitamin into any banana they please.

Not all bananas lack vitamin A, but the ones they eat in Uganda do. You could try to crossbreed them with a vitamin-rich range, but regrettably, that wouldn’t work. Domesticated bananas are sterile.

So scientists used genetic modification. Employing genes from a vitamin–Arich( but hard-to-grow) stres called Fe’i, QUT professor James Dale and his team loaded commercially viable banana seedlings with beta-carotene, information sources of vitamin A.

It took some experimenting, but they were able to up the beta-carotene content in the fruit by more than 30 times hopefully, enough to stave off vitamin A deficiency.

As an interesting side effect, the banana’s flesh objective up turning a rich, golden yellow .

Beta-carotene isn’t merely a source of vitamin A. It’s also a naturally occurring bright orange pigment.( It’s responsible for dedicating carrots their colouring .)

As for savour, Dale says it was unaffected .

This particular project was just a proof of concept, but Dale and his colleagues have now given the technology to local Ugandan scientists, who’ll start experimenting with Ugandan banana plants.

“They will be the leaders, ” Dale says.

Other attempts to use genetic modification to fortify foods have been met with skepticism and resistance. In 2013, a field of vitamin–Aenriched “golden rice” was vandalized and destroyed by protesters in the Philippines. But Dale says their project differ from commercial genetic modification. They’re not patenting any of the technology, and since domesticated bananas are sterile, there shouldn’t be any worry about cross-pollination.

This could be an easy, self-sustaining way to save hundreds of thousands of kids a year.

The hope is to start sharing the bananas with Ugandan farmers soon. Once they’re out there, the farmers will be free and encouraged to give saplings to their friends and neighbours, as well.

People could be planting, eating, and sharing the golden bananas as soon as 2021.

Funding for professor Dale’s project was provided by the Bill& Melinda Gates Foundation and the U.K. Department for International Development .

Make sure to visit: